

Er³⁺ doped tellurite glass films through sputtering

P. Ramanan^{1,*}, J. Gutwirth², A. Viswanathan², T. Ghanawi³, F. Starecki³, V. Nazabal^{3,2}, M. Roussey⁴, P. Nemec², L. Petit¹

¹ Photonics Laboratory, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 3, 33720 Tampere, Finland.

² Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic.

³ Institut des Sciences Chimiques de Rennes (ISCR), Univ Rennes, CNRS – UMR 6226, F-35000 Rennes, France.

⁴ Faculty of Science, Forestry and Technology, University of Eastern Finland, Yliopistokatu 2, 80100 Joensuu, Finland.

Introduction

Growing global issue to address environmental water pollution \rightarrow Increase in regulations and in demand for improved water quality monitoring solutions.

About IBAIA project (https://ibaia.eu/): Development of innovative optimally functionalized sensor modules, one of them being for microplastics and salinity.

Goal of IBAIA project: Monitoring a wider range of water quality parameters in comparison to existing solutions and provide a one-size-fits-all solution for waterbody quality detection. Contributing to European Green deal objectives.

Film characterization #2

SEM/EDS composition analysis of the targets and films (± 1 at%)

Material	Oxygen (O)	Tellurium (Te)	Zinc (Zn)	Erbium (Er)	Barium (Ba)	Total	
Target TeBa	62	25	8	2	3	100	Deposition leads to an increase in the amount of Barium and Bismuth at the expense of Tellurium.
30 W	66	15	10	3	6	100	
40 W	66	17	9	2	6	100	
50 W	65	18	9	2	6	100	
					Bismuth (Bi)		
Target TeBi	63	22	7	2	6	100	 Power does not have a strong impact on the film composition. TeNa film has the closest stoichiometric composition to bulk target.
20 W	67	17	7	1	8	100	
30 W	67	15	7	1	10	100	
					Sodium (Na)		
Target TeNa	59	24	6	2	9	100	
20 W	63	21	6	1	9	100	
30 W	62	21	6	2	9	100	

Interest of study

 \bullet Use of Erbium (Er³⁺) doped oxide glass waveguide with high refractive index for the sensing.

Goal: To study the feasibility to deposit tellurite glasses doped with Er³⁺ into films using sputtering.

Film deposition

Target preparation:

• Glass composition: 68.25 TeO₂ - 19.5 ZnO - 9.75 X - 2.5 Er_2O_3 (in mol%) with X = BaO (TeBa), Bi_2O_3 (TeBi), Na_2O (TeNa)*. Standard melt-quench technique: Melting at 775 °C for 40 minutes & annealing at around T_{α} for 6 hours.

Sputtering targets

Film deposition using radio-frequency (rf) magnetron sputtering parameters for thickness of \approx 700 nm — 1 μ m.

- ✤ Power: 20 W to 50 W in 10 W increment.
- ✤ Argon-Oxygen gas flow ratio: 40:10 sccm (fixed for all depositions).
- Target to substrate distance: 50 mm (fixed for all depositions, vertical). Substrate rotated at 5 rpm.
- ✤ Overall pressure: 0.5 Pa (fixed for all depositions).
- ✤ Substrate(s): c-Si <100>, BK7 glass, SiO₂/Si.

Highest deposition rate for the TeBi composition followed by TeNa and TeBa.

Film characterization #1

rate (nm/min)

Deposition

20

30

Power (W)

Power vs Deposition rate

- - TeBa

– TeBi

- TeNa

50

40

XRD pattern of the films

 \clubsuit Highest roughness. For the TeBa films with increase in power \rightarrow Decrease in surface roughness. Low roughness for the TeBi and TeNa films.

AFM images measured 8 months after deposition (ageing)

- Noticeable increase in roughness for TeBa and TeNa films overtime maybe due to oxidation or crystallization, subject to further analysis.
- TeBi film is the most stable overtime.

⊆ × 2.091 <u></u> 1.8920 **TeBi film has the largest** dn/dT. ົ 1.8915 ; 2.090 ⊓ الله 1.8910 2.089 1.890560 75 90 45 30 45 60 75 90 75 90 45 60

1.8925 R² = 0.9699

 $dn/dT = 26 \times 10^{-6} \text{ K}^{-1}$

Temperature (°C)

CONCLUSION

- Film deposition has a noticeable impact on the glass composition and on the structural, optical, and spectroscopic properties.
- ✓ Possible to deposit transparent amorphous doped tellurite films using radio-frequency (rf) magnetron sputtering.
- Changes in the glass composition after film deposition, especially lower Te content leading to film with lower refractive index than the target for the TeBa and TeNa compositions.
- \checkmark Visible and NIR Emissions observed from the films, confirming the presence of Er³⁺ in the films BUT film deposition process is suspected to change the Er³⁺ sites.

TeBi film has the highest refractive index and dn/dT and is the most chemically stable film overtime.

References:

Linear fit

 $R^2 = 0.9998$

30

Temperature (°C)

ີ 1.8845

1.8840

 $1.8855 - dn/dT = 24 \times 10^{-6} \text{ K}^{-1}$

* A. Lemiere, et al, Journal of the American Ceramic Society, vol. 105, no. 12, pp. 7186-7195, 2022.

Linear fit

 $dn/dT = 42 \times 10^{-6} K^{-1}$

Temperature (°C)

2.092 R² = 0.9968

Acknowledgments:

The European Union's Horizon Europe Framework Programme under grant agreement No. 101092723 and the Academy of Finland (Flagship Programme, Photonics Research, and Innovation PREIN).